Androgens regulate the development of neuropathology in a triple transgenic mouse model of Alzheimer's disease.

نویسندگان

  • Emily R Rosario
  • Jenna C Carroll
  • Salvatore Oddo
  • Frank M LaFerla
  • Christian J Pike
چکیده

Normal age-related testosterone depletion in men is a recently identified risk factor for Alzheimer's disease (AD), but how androgen loss affects the development of AD is unclear. To investigate the relationship between androgen depletion and AD, we compared how androgen status affects the progression of neuropathology in the triple transgenic mouse model of AD (3xTg-AD). Adult male 3xTg-AD mice were sham gonadectomized (GDX) or GDX to deplete endogenous androgens and then exposed for 4 months to either the androgen dihydrotestosterone (DHT) or to placebo. In comparison to gonadally intact 3xTg-AD mice, GDX mice exhibited robust increases in the accumulation of beta-amyloid (Abeta), the protein implicated as the primary causal factor in AD pathogenesis, in both hippocampus and amygdala. In parallel to elevated levels of Abeta, GDX mice exhibited significantly impaired spontaneous alternation behavior, indicating deficits in hippocampal function. Importantly, DHT treatment of GDX 3xTg-AD mice attenuated both Abeta accumulation and behavioral deficits. These data demonstrate that androgen depletion accelerates the development of AD-like neuropathology, suggesting that a similar mechanism may underlie the increased risk for AD in men with low testosterone. In addition, our finding that DHT protects against acceleration of AD-like neuropathology predicts that androgen-based hormone therapy may be a useful strategy for the prevention and treatment of AD in aging men.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cholinergic neuropathology in a mouse model of Alzheimer's disease

Transgenic mice over-expressing mutant human amyloid precursor protein (PDAPP mouse) develop several Alzheimer’s disease (AD)-like lesions including an age-related accumulation of amyloid-?-containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes, that is characteristic of AD pathology, no evidence of neurodegeneration has been observed. T...

متن کامل

Cholinergic neuropathology in a mouse model of Alzheimer's disease

Transgenic mice over-expressing mutant human amyloid precursor protein (PDAPP mouse) develop several Alzheimer’s disease (AD)-like lesions including an age-related accumulation of amyloid-?-containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes, that is characteristic of AD pathology, no evidence of neurodegeneration has been observed. T...

متن کامل

Quantitative in vivo measurement of early axonal transport deficits in a triple transgenic mouse model of Alzheimer's disease using manganese-enhanced MRI

Impaired axonal transport has been linked to the pathogenic processes of Alzheimer's disease (AD) in which axonal swelling and degeneration are prevalent. The development of non-invasive neuroimaging methods to quantitatively assess in vivo axonal transport deficits would be enormously valuable to visualize early, yet subtle, changes in the AD brain, to monitor the disease progression and to qu...

متن کامل

Progesterone and estrogen regulate Alzheimer-like neuropathology in female 3xTg-AD mice.

Estrogen depletion in postmenopausal women is a significant risk factor for the development of Alzheimer's disease (AD), and estrogen-based hormone therapy may reduce this risk. However, the effects of progesterone both alone and in combination with estrogen on AD neuropathology remain unknown. In this study, we used the triple transgenic mouse model of AD (3xTg-AD) to investigate the individua...

متن کامل

P-111: An Attempt to Facilitate the Production of Transgenic Mouse As A Model for Gene Therapy of Gaucher Disease

Background: Gaucher disease is an autosomal recessive inherited lysosomal storage disorder that affects many of the body's organs and tissues by defective function of the catabolic enzyme β-glucocerebrosidase. Gene therapy is one of the efficient ways for treatment of this disease. Due to the lack of appropriate animal models, in the field of gene therapy little progress has been done.Mate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 51  شماره 

صفحات  -

تاریخ انتشار 2006